Steel

Sustainable housings with coil coating

Coil-coated pladur[®] steels for economical steel housings in the energy and solar industries.

For your requirements regarding cost-effectiveness, sustainability, and quality.

Are you looking for the right steel for the housings or claddings of your air conditioning and ventilation units, heaters, charging stations, wallboxes, or solar storage tanks? If so, then sustainable coil-coating products from thyssenkrupp Steel are the right choice for you. This is because the organic coil-coated pladur[®] steels offer greater economy and performance than batch-coated steel.

You no longer need to go to the time, trouble, and expense of organizing the coating of housings yourself, nor must you handle procurement, storage, and professional disposal of coating materials any longer. Cut out these process steps with coil coating materials produced individually for you. And for your climate protection ambitions, we also supply coil-coated pladur[®] products as bluemint[®] Steel – to significantly reduce your carbon footprint.

Your advantages with coil-coating products:

- ⇒ Ease of processing: pladur[®] can be shaped into any form without compromising quality.
- Cost-effectiveness: pladur[®] saves time, storage, and production costs – while ensuring top quality.
- Sustainability: pladur[®] is manufactured in a resource-saving manner and is 100 % recyclable.
- A wide range of surfaces: pladur[®] is offered with paint or film surfaces in almost every color and texture.
- → Functionality: pladur[®] is resistant to corrosion and UV radiation, durable, robust, and easy to clean.

Properties that have proven irresistible in various industries for years now.

For aesthetic and functional housings

Today, coil-coated pladur[®] steel represents the ideal solution for a wide variety of housings and claddings. This is because the material meets the high demands placed on corrosion protection, aesthetics and functionality. What's more, coil-coating products are also used successfully in multi-story and industrial buildings, household appliances, commercial vehicles, and garage doors.

Coil coating: A sustainable coating concept

We offer our customers over 700 different color shades, which we offer in various surface finishes. These represent the highest level of refinement in our portfolio, consisting of a composite material made of a steel substrate, hot-dip galvanization, and the organic coating. In addition, the coil-coating process is one of the most sustainable coating methods available. This is due to the outstanding ratio of coated surface area per minute to solvent emissions, improved energy balance through heat recovery from burnt solvents, nearly 100% application efficiency, and reduced water consumption.

Climate-friendly production – teamed with sustainable savings.

Reach your goal faster and more economically

Housing components for wallboxes, air-conditioning or heating units as well as storage units and transformers are often coated in a time-consuming batch process, which means high storage, material, and production costs. With coil coating, you receive a product with a finished surface that has been coated in an environmentally friendly manner, is available in many different color shades and surface variants, and is directly suitable for further processing. True to the motto of "finish first, fabricate later."

Products for a carbon-neutral future

Sustainability plays a particularly important role today, especially when it comes to products and appliances for the energy and electric mobility sectors. The organic coil-coated pladur® steels in our portfolio are made from a durable material that helps conserve resources. We also offer pladur[®] in the CO₂-reduced bluemint® Steel variant. At our Duisburg location, we cut emissions in the manufacture of the bluemint[®] recycled variant by using scrap – thus reducing your Scope 3 emissions. You can find out more at bluemint-steel.com

pladur® products for the energy and solar industries: Areas of application and performance matrix

adur® p ssic F 5 µm 5 nooth 5 D-85 3	Dladur® Resistant 50μm Smooth 35	pladur® Smooth 25 µm Smooth 5–91	pladur® Structured 30 µm Structured 12–90	HVAC pladur® Tough 30 µm Finely structured 7-45	pladur® Wrinkle 35 µm Structured 2-5	pladur® Deluxe 30 µm Finely struc- tured, matt	pladur® Durable 35 µm Smooth	pladur® Strong 120 µm Structured
adur® p asic F 5 µm 5 nooth 5 D-85 3	oladur® Resistant 50 µm Smooth 35	pladur® Smooth 25 μm Smooth 5–91	pladur® Structured 30 µm Structured 12–90	pladur® Tough 30 µm Finely structured 7−45	pladur® Wrinkle 35µm Structured 2–5	Pladur® Deluxe 30 µm Finely struc- tured, matt	pladur® Durable 35 μm Smooth	pladur® Strong 120 μm Structured
5μm ξ nooth S D-85 3	50 µm Smooth 35	25 μm Smooth 5-91	30 µm Structured 12–90	30 µm Finely structured 7-45	35μm Structured 2–5	30 µm Finely struc- tured, matt	35 μm Smooth	120 µm Structured
nooth 5)-85 3	Smooth 35	Smooth 5-91	Structured	Finely structured 7-45	Structured	Finely struc- tured, matt	Smooth	Structured
nooth S D-85 3	Smooth	Smooth 5-91	Structured	Finely structured 7-45	Structured	Finely struc- tured, matt	Smooth	Structured
)-85 3	35	5-91	12-90	7-45	2-5	3	30-70	
						0	00 /0	5-70
_{IV} 2 ³ -4 F	R _{UV} 3-4	R _{UV} 2 ³	$R_{UV} 2^3 - 3$	$R_{UV} 2^3 - 4$	$R_{UV} 3-4$	$R_{_{UV}} 3-4$	$R_{_{UV}}3-4$	
2 4	A2	_	_	A2	A2	A2	A2	_
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 ³ -4	2 ³ -4 R _{UV} 3-4 A2	2 ³ -4 R _{UV} 3-4 R _{UV} 2 ⁵ A2 -	2 ³ -4 R _{UV} 3-4 R _{UV} 2 ³ R _{UV} 2 ³ -3 A2	$2^{3}-4$ $R_{UV} 3-4$ $R_{UV} 2^{3}$ $R_{UV} 2^{3}-3$ $R_{UV} 2^{3}-4$ A2 - A2	$2^{3}-4$ $R_{UV} 3-4$ $R_{UV} 2^{3}$ $R_{UV} 2^{3}-3$ $R_{UV} 2^{3}-4$ $R_{UV} 3-4$ A2 - A2 A2	$2^{3}-4 \qquad R_{UV} 3-4 \qquad R_{UV} 2^{3} \qquad R_{UV} 2^{3}-3 \qquad R_{UV} 2^{3}-4 \qquad R_{UV} 3-4 \qquad R_{UV} 3-4$	$2^{3}-4 R_{UV} 2^{3} R_{UV} 2^{3}-3 R_{UV} 2^{3}-4 R_{UV} 3-4 R_{UV} 3-$

Not applicable Low/minor Good Very good

¹ Nominal layer thickness of typical configuration variant; the optimum layer thickness for specific orders may deviate from the specifications.

² Comparison of the pladur[®] products listed here.

⁴ General building regulations approval (Z-56.426-65) available.

We also offer other coating versions in addition to the products listed here. We look forward to hearing from you.

Steel

thyssenkrupp Steel Europe AG Kaiser-Wilhelm-Strasse 100 47166 Duisburg, Germany P: +49 203 52 - 0 F: +49 203 52 - 25102 www.thyssenkrupp-steel.com

Industry P +49 2732 599 4121

Further information at: www.thyssenkrupp-steel.com/en/coil-coated-housing

